Search results for "solar [matter]"

showing 10 items of 1254 documents

Matter Mixing in Aspherical Core-collapse Supernovae: Three-dimensional Simulations with Single Star and Binary Merger Progenitor Models for SN 1987A

2019

We perform three-dimensional hydrodynamic simulations of aspherical core-collapse supernovae focusing on the matter mixing in SN 1987A. The impacts of four progenitor (pre-supernova) models and parameterized aspherical explosions are investigated. The four pre-supernova models include a blue supergiant (BSG) model based on a slow merger scenario developed recently for the progenitor of SN 1987A (Urushibata et al. 2018). The others are a BSG model based on a single star evolution and two red supergiant (RSG) models. Among the investigated explosion (simulation) models, a model with the binary merger progenitor model and with an asymmetric bipolar-like explosion, which invokes a jetlike explo…

010504 meteorology & atmospheric sciencesSupergiant starAstrophysics::High Energy Astrophysical PhenomenaBinary numberchemistry.chemical_elementNeutron starFOS: Physical sciencesHydrodynamical simulationAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesSettore FIS/05 - Astronomia E Astrofisica0103 physical sciencesCore-collapse supernovaeAstrophysics::Solar and Stellar AstrophysicsRed supergiant010303 astronomy & astrophysicsMixing (physics)HeliumStellar evolutionary modelSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesLine (formation)PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Astronomy and AstrophysicsSupernova dynamicSupernovaNeutron starchemistryAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceExplosive nucleosynthesisSupergiantAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Results from DROXO IV. EXTraS discovery of an X-ray flare from the Class I protostar candidate ISO-Oph 85

2016

X-ray emission from Young Stellar Objects (YSOs) is crucial to understand star formation. A very limited amount of X-ray results is available for the protostellar (ClassI) phase. A systematic search of transient X-ray phenomena combined with a careful evaluation of the evolutionary stage offer a widely unexplored window to our understanding of YSOs X-ray properties. Within the EXTraS project, a search for transients and variability in the whole XMM-Newton archive, we discover transient X-ray emission consistent with ISO-Oph 85, a strongly embedded YSO in the rho Ophiuchi region, not detected in previous time-averaged X-ray studies. We extract an X-ray light curve for the flare and determine…

010504 meteorology & atmospheric sciencesYoung stellar objectAstrophysics::High Energy Astrophysical PhenomenaPopulationFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesflares; X-rayslaw.inventionPhotometry (optics)law0103 physical sciencesProtostarAstrophysics::Solar and Stellar Astrophysicseducation010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencescoronaePhysicseducation.field_of_studystars: protostarsStar formationactivityAstronomy and AstrophysicsLight curveAstrophysics - Solar and Stellar Astrophysics13. Climate actionSpace and Planetary ScienceSpectral energy distributionAstrophysics::Earth and Planetary AstrophysicsFlare
researchProduct

Deep X-ray view of the Class I YSO Elias 29 with XMM-Newton and NuSTAR

2019

[Abridged] We investigated the X-ray characteristics of the Class I YSO Elias 29 with joint XMM-Newton and NuSTAR observations of 300 ks and 450 ks, respectively. These are the first observations of a very young (<1 Myr) stellar object in a band encompassing simultaneously both soft and hard X-rays. In addition to the hot Fe complex at 6.7 keV, we observed fluorescent emission from Fe at $\sim6.4$ keV, confirming the previous findings. The line at 6.4 keV is detected during quiescent and flaring states and its flux is variable. The equivalent width is found varying in the $\approx 0.15--0.5$ keV range. These values make unrealistic a simple model with a centrally illuminated disk and sug…

010504 meteorology & atmospheric sciencesYoung stellar objectAstrophysics::High Energy Astrophysical PhenomenaPopulationFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural scienceslaw.inventionSettore FIS/05 - Astronomia E Astrofisicalaw0103 physical sciencesAstrophysics::Solar and Stellar Astrophysicseducation010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesLine (formation)PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)education.field_of_studyStar formationAstronomy and AstrophysicsCoronaAccretion (astrophysics)Astrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceAstrophysics - High Energy Astrophysical Phenomenastars:activity–stars:coronae–stars:pre-mainsequence–stars:formation–stars:flareEquivalent widthFlare
researchProduct

Models and data analysis tools for the Solar Orbiter mission

2020

All authors: Rouillard, A. P.; Pinto, R. F.; Vourlidas, A.; De Groof, A.; Thompson, W. T.; Bemporad, A.; Dolei, S.; Indurain, M.; Buchlin, E.; Sasso, C.; Spadaro, D.; Dalmasse, K.; Hirzberger, J.; Zouganelis, I.; Strugarek, A.; Brun, A. S.; Alexandre, M.; Berghmans, D.; Raouafi, N. E.; Wiegelmann, T.; Pagano, P.; Arge, C. N.; Nieves-Chinchilla, T.; Lavarra, M.; Poirier, N.; Amari, T.; Aran, A.; Andretta, V.; Antonucci, E.; Anastasiadis, A.; Auchère, F.; Bellot Rubio, L.; Nicula, B.; Bonnin, X.; Bouchemit, M.; Budnik, E.; Caminade, S.; Cecconi, B.; Carlyle, J.; Cernuda, I.; Davila, J. M.; Etesi, L.; Espinosa Lara, F.; Fedorov, A.; Fineschi, S.; Fludra, A.; Génot, V.; Georgoulis, M. K.; Gilbe…

010504 meteorology & atmospheric sciencescorona [Sun]Solar windAstrophysics[SDU.ASTR] Sciences of the Universe [physics]/Astrophysics [astro-ph]7. Clean energy01 natural scienceslaw.inventionData acquisitionlawCoronal mass ejectiongeneral [Sun]QB AstronomyAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsSun: magnetic fieldsQCComputingMilieux_MISCELLANEOUSQBPhysics[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]3rd-DASenergetic particlesSolar windCORONAL MASS EJECTIONSnumerical modelingmagnetic fields [Sun]solar windPhysics::Space PhysicsSystems engineeringAstrophysics::Earth and Planetary Astrophysicsatmosphere [Sun]fundamental parameters [Sun]Sun: generalFORCE-FREE FIELDSun: fundamental parametersSolar radiusContext (language use)STREAMER STRUCTUREOrbiter0103 physical sciencesOPTIMIZATION APPROACH[SDU.ASTR.SR] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]POLARIZATION MEASUREMENTSSun: Solar wind3-DIMENSIONAL STRUCTURE0105 earth and related environmental sciencesSpacecraftbusiness.industrySun: corona[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]solar coronaMAGNETIC-FLUX ROPESAstronomy and AstrophysicsSHOCKS DRIVEN115 Astronomy Space scienceSPECTRAL-LINESQC Physics13. Climate actionSpace and Planetary SciencebusinessHeliosphereSun: atmosphereELECTRON-DENSITY
researchProduct

Gravitational wave signature of proto-neutron star convection: I. MHD numerical simulations

2021

Gravitational waves provide a unique and powerful opportunity to constrain the dynamics in the interior of proto-neutron stars during core collapse supernovae. Convective motions play an important role in generating neutron stars magnetic fields, which could explain magnetar formation in the presence of fast rotation. We compute the gravitational wave emission from proto-neutron star convection and its associated dynamo, by post-processing three-dimensional MHD simulations of a model restricted to the convective zone in the anelastic approximation. We consider two different proto-neutron star structures representative of early times (with a convective layer) and late times (when the star is…

010504 meteorology & atmospheric sciencesdimension: 3neutron star: magnetic fieldtorusAstrophysicsMagnetar01 natural sciencesrotationstarstrong fieldMagnetarsAstrophysics::Solar and Stellar Astrophysicsgravitational radiation: spectrumgravitational radiation: signatureSupernova core collapse010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsMethods numerical[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]formationscalingSupernovaAmplitudeAstrophysics - Solar and Stellar AstrophysicsConvection zoneAstrophysics - High Energy Astrophysical PhenomenaDynamosupernova: collapseprotoneutron starFOS: Physical sciencesConvectionsymmetry: axialGravitational waves0103 physical sciencesstructurenumerical calculationsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesGravitational waveAstronomy and AstrophysicsmagnetarNeutron star13. Climate actionSpace and Planetary Scienceefficiencygravitational radiation: emissionMagnetohydrodynamics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph][PHYS.ASTR] Physics [physics]/Astrophysics [astro-ph]
researchProduct

The XMM-Newton Optical Monitor survey of the Taurus molecular cloud

2007

The Optical Monitor (OM) on-board XMM-Newton obtained optical/ultraviolet data for the XMM-Newton Extended Survey of the Taurus Molecular Cloud (XEST), simultaneously with the X-ray detectors. With the XEST OM data, we aim to study the optical and ultraviolet properties of TMC members, and to do correlative studies between the X-ray and OM light curves. In particular, we aim to determine whether accretion plays a significant role in the optical/ultraviolet and X-ray emissions. The Neupert effect in stellar flares is also investigated. Coordinates, average count rates and magnitudes were extracted from OM images, together with light curves with low time resolution (a few kiloseconds). For a …

010504 meteorology & atmospheric sciencesmedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaExtinction (astronomy)FOS: Physical sciencesFluxAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural scienceslaw.invention[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]law0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsComputingMilieux_MISCELLANEOUS0105 earth and related environmental sciencesmedia_commonPhysicsMolecular cloudAstrophysics (astro-ph)Astronomy and AstrophysicsLight curveAccretion (astrophysics)Stars[PHYS.ASTR.CO] Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Space and Planetary ScienceSkyPhysics::Space PhysicsFlare
researchProduct

Potential Solar Radiation as a Driver for Bark Beetle Infestation on a Landscape Scale

2019

In recent decades, Norway spruce (Picea abies L. Karst.) forests of the High Tatra Mountains have suffered unprecedented tree mortality caused by European spruce bark beetle (Ips typographus L.). Analysis of the spatiotemporal pattern of bark beetle outbreaks across the landscape in consecutive years can provide new insights into the population dynamics of tree-killing insects. A bark beetle outbreak occurred in the High Tatra Mountains after a storm damaged more than 10,000 ha of forests in 2004. We combined yearly Landsat-derived bark beetle infestation spots from 2006 to 2014 and meteorological data to identify the susceptibility of forest stands to beetle infestation. We found that digi…

0106 biological sciencesBark beetle010504 meteorology & atmospheric sciencessolar radiationPopulationkirjanpainaja (kaarnakuoriaiset)<i>Ips typographus</i>medicine.disease_cause010603 evolutionary biology01 natural sciencesIps typographustuhohyönteisetInfestationmedicineSolar radiationeducationauringonsäteily0105 earth and related environmental scienceseducation.field_of_studyTatravuoristobiologyintegumentary systemNational parkPicea abiesHigh Tatra MountainsOutbreakNational parknational parkForestryStormForestryPicea abieslcsh:QK900-989biology.organism_classificationpopulaatiodynamiikkakansallispuistotvisual_artlcsh:Plant ecologyvisual_art.visual_art_mediumBark<i>Picea abies</i>metsäkuusiForests
researchProduct

Effect of Sunlight Exposure on Anthocyanin and Non-Anthocyanin Phenolic Levels in Pomegranate Juices by High Resolution Mass Spectrometry Approach

2020

Quali-quantitative analyses of anthocyanins and non-anthocyanin phenolic compounds performed with the use of liquid chromatography coupled with high resolution mass spectrometry, were evaluated in juice of pomegranate fruits (&lsquo

0106 biological sciencesHealth (social science)Fruit weightPlant SciencephenolsHealth benefitslcsh:Chemical technology01 natural sciencesHealth Professions (miscellaneous)MicrobiologyArticlechemistry.chemical_compound0404 agricultural biotechnologyAntimicrobial effectUltra High Performance Liquid Chromatography -Orbitrap-Mass Spectrometrylcsh:TP1-1185Food scienceHPLC MSpomegranate juicessolar exposurepolyphenolsSunlightPunica granatumChemistryfungihydrolysable tanninsfood and beverages04 agricultural and veterinary sciences040401 food sciencecarbohydrates (lipids)PolyphenolAnthocyaninflavonoidsUltra High Performance Liquid Chromatography-Orbitrap-Mass Spectrometry010606 plant biology & botanyFood ScienceFoods
researchProduct

The Influence of Solar Power Plants on Microclimatic Conditions and the Biotic Community in Chilean Desert Environments

2016

The renewable energy sector is growing at a rapid pace in northern Chile and the solar energy potential is one of the best worldwide. Therefore, many types of solar power plant facilities are being built to take advantage of this renewable energy resource. Solar energy is considered a clean source of energy, but there are potential environmental effects of solar technology, such as landscape fragmentation, extinction of local biota, microclimate changes, among others. To be able to minimize environmental impacts of solar power plants, it is important to know what kind of environmental conditions solar power plants create. This study provides information about abiotic and biotic conditions i…

0106 biological sciencespienilmastoPower stationphotovoltaic power plant020209 energyMicroclimateConservation of Energy Resources02 engineering and technology01 natural sciencesSolar trackerEnvironmental protectionarthropod species compositionthe Atacama desertSolar Energy0202 electrical engineering electronic engineering information engineeringAnimalsChileArthropodsSolar powerGlobal and Planetary ChangeEcologyEcologybusiness.industry010604 marine biology & hydrobiologyPhotovoltaic systemTemperatureBiotaBiodiversityMicroclimateSolar energyBiotaPollutionRenewable energyEnvironmental sciencebusinessenvironmental effectPower Plants
researchProduct

Direct exposure to solar radiation causes radial growth eccentricity at the beginning of the growing season in Robinia pseudoacacia

2020

Abstract Our study investigated the effect of stem temperature increase on xylem formation in Robinia pseudoacacia tree-trunks, caused by direct exposure to solar radiation. It is important to determine factors which may improve the concentricity of deposited wood tissue and intensify xylogenesis because a strong irregularity of wood tissue deposited in the radial direction in mature trees of R. pseudoacacia reduces the commercial value of the wood. Samples of vascular cambium along with adjacent tissues were collected from the southern (illuminated) and northern (shaded) side of tree-trunks growing in the inner and peripheral (thus exposed to direct sunlight) zones of the research plot. Sa…

0106 biological sciencessecondary xylemvascular cambiumsolar radiationGrowing seasonPlant ScienceBiologyRadiation01 natural sciencesCambial derivatives formation03 medical and health sciencesVascular cambium030304 developmental biologySunlight0303 health sciencesfungiRobiniatemperatureXylemForestryxylogenesis intensificationbiology.organism_classificationHorticultureDirect exposurering-porousDeposition (chemistry)010606 plant biology & botanyIAWA Journal
researchProduct